Олимпиадные задачи по математике для 2-11 класса
По кругу выписаны в некотором порядке все натуральные числа от 1 до<i> N </i>,<i> N<img src="/storage/problem-media/110009/problem_110009_img_2.gif"></i>2. При этом для любой пары соседних чисел имеется хотя бы одна цифра, встречающаяся в десятичной записи каждого из них. Найдите наименьшее возможное значение<i> N </i>.
Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). <div align="center"> <img src="/storage/problem-media/109877/problem_109877_img_2.gif"> </div>Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
Найдите все натуральные числа <i>n</i>, для которых сумма цифр числа 5<i><sup>n</sup></i> равна 2<i><sup>n</sup></i>.
В параллелограмме <i>ABCD</i> точки <i>M</i> и <i>N</i> – середины сторон <i>BC</i> и <i>CD</i> соответственно. Могут ли лучи <i>AM</i> и <i>AN</i> делить угол <i>BAD</i> на три равные части?