Олимпиадные задачи по математике - сложность 2-4 с решениями
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
Найдите <i>x</i><sub>1000</sub>, если <i>x</i><sub>1</sub> = 4, <i>x</i><sub>2</sub> = 6, и при любом натуральном <i>n</i> ≥ 3 <i>x<sub>n</sub></i> – наименьшее составное число, большее 2<i>x</i><sub><i>n</i>–1</sub> – <i>x</i><sub><i>n</i>–2</sub>.
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из <i>k</i> цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) <i>k</i> = 7; б) <i>k</i> = 10.
На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.
Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения<i>n</i>числа<i>n</i>,<i>n</i>- 50,<i>n</i>+ 1987 принадлежали трём разным подмножествам?
а) Существует ли последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и <i>a<sub>n</sub> ≤ n</i><sup>10</sup> при любом <i>n</i>? б) Тот же вопрос, если <i>a<sub>n</sub> ≤ n</i><img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/79370/problem_79370_img_2.gif"> при любом <i>n</i>.
На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.
Имеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на <i>k</i> равных по массе групп.
Доказать, что не менее чем <i>k</i> способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на <i>k</i> равных по массе групп.
В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.
Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.
Для каких <i>n</i> существует такая замкнутая несамопересекающаяся ломаная из <i>n</i> звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
В таблице размерами <i>m×n</i> расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто <i>k</i> наибольших чисел (<i>k ≤ m</i>), в каждой строке – <i>l</i> наибольших чисел (<i>l ≤ n</i>). Докажите, что по крайней мере <i>kl</i> чисел подчёркнуты дважды.
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Каждый отрезок покрашен в один из <i>K</i> цветов. Петя хочет покрасить каждую точку в один из этих цветов так, чтобы не нашлось двух точек и отрезка между ними, окрашенных в один цвет. Всегда ли Пете это удастся, если
a) <i>K</i> = 7; б) <i>K</i> = 10?