Олимпиадные задачи по математике - сложность 5 с решениями
На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Каждую грань тетраэдра можно поместить в круг радиуса1. Докажите, что весь тетраэдр можно поместить в шар радиуса<i> <img src="/storage/problem-media/111864/problem_111864_img_2.gif"> </i>.
На плоскости дано конечное множество точек<i> X </i>и правильный треугольник<i> T </i>. Известно, что любое подмножество<i> X' </i>множества<i> X </i>, состоящее из не более9точек, можно покрыть двумя параллельными переносами треугольника<i> T </i>. Докажите, что все множество<i> X </i>можно покрыть двумя параллельными переносами<i> T </i>.