Олимпиадные задачи по математике для 8 класса
Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.
На стороне <i>AC</i> треугольника <i>ABC</i> отметили произвольную точку <i>D</i>. Точки <i>E</i> и <i>F</i> симметричны точке <i>D</i> относительно биссектрис углов <i>A</i> и <i>C</i> соответственно. Докажите, что середина отрезка <i>EF</i> лежит на прямой <i>A</i><sub>0</sub><i>C</i><sub>0</sub>, где <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> – точки касания вписанной окружности треугольника <i>ABC</i> со сторонами <i>BC</i> и <i>AB</i> соответственно.
Четырёхугольник <i>ABCD</i> вписан в окружность с диаметром <i>AC</i>. Точки <i>K</i> и <i>M</i> – проекции вершин <i>A</i> и <i>C</i> соответственно на прямую <i>BD</i>. Через точку <i>K</i> проведена прямая, параллельная <i>BC</i> и пересекающая <i>AC</i> в точке <i>P</i>. Докажите, что угол <i>KPM</i> – прямой.
Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.
Разрежьте неравносторонний треугольник на четыре подобных треугольника, среди которых не все одинаковы.
Можно ли вместо звёздочек вставить в выражение НОК(*, *, ) – НОК(, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?