Олимпиадные задачи по математике для 9-10 класса

Дан параллелограмм <i>ABCD</i>. Вписанные окружности треугольников <i>ABC</i> и <i>ADC</i> касаются диагонали <i>AC</i> в точках <i>X</i> и <i>Y</i>. Вписанные окружности треугольников <i>BCD</i> и <i>BAD</i> касаются диагонали <i>BD</i> в точках <i>Z</i> и <i>T</i>. Докажите, что если все точки <i>X, Y, Z, T</i> различны, то они являются вершинами прямоугольника.

Равнобедренная трапеция описана около окружности. Докажите, что биссектриса тупого угла этой трапеции делит её площадь пополам.

На продолжении стороны <i>BC</i> треугольника <i>ABC</i> за вершину <i>B</i> отложен отрезок <i>BB'</i>, равный стороне <i>AB</i>. Биссектрисы внешних углов при вершинах <i>B</i> и <i>C</i> пересекаются в точке <i>M</i>. Докажите, что точки <i>A, B', C</i> и <i>M</i> лежат на одной окружности.

Докажите, что следующие свойства тетраэдра равносильны:

  1. все грани равновелики;

  2. каждое ребро равно противоположному;

  3. все грани равны;

  4. центры описанной и вписанной сфер совпадают;

  5. суммы углов при каждой вершине равны;

  6. сумма плоских углов при каждой вершине равна 180<i><sup>o</sup> </i>;

  7. развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;

  8. все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;

  9. ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;

  10. параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;

11...

На сторонах <i>BC, AC</i> и <i>AB</i> остроугольного треугольника <i>ABC</i> взяты точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> так, что лучи <i>A</i><sub>1</sub><i>A, B</i><sub>1</sub><i>B</i> и <i>С</i><sub>1</sub><i>C</i> являются биссектрисами углов треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>СС</i><sub>1</sub> – высоты тре...

В остроугольный треугольник вписана окружность радиуса <i>R</i>. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен <i>Q</i>. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.

Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.

Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.

В треугольнике <i>ABC</i> угол <i>C</i> прямой. На катете <i>CB</i> как на диаметре во внешнюю сторону построена полуокружность, точка <i>N</i> – середина этой полуокружности. Докажите, что прямая <i>AN</i> делит пополам биссектрису <i>CL</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка