Олимпиадные задачи из источника «Заключительный этап» - сложность 2 с решениями
Число <i>x</i> таково, что обе суммы <i>S</i> = sin 64<i>x</i> + sin 65<i>x</i> и <i>C</i> = cos 64<i>x</i> + cos 65<i>x</i> – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.
Пусть <i>P</i>(<i>x</i>) – многочлен степени <i>n</i> ≥ 2 с неотрицательными коэффициентами, а <i>a, b</i> и <i>c</i> – длины сторон некоторого остроугольного треугольника.
Докажите, что числа <img align="absmiddle" src="/storage/problem-media/66160/problem_66160_img_2.gif"> также являются длинами сторон некоторого остроугольного треугольника.
На доску выписали все собственные делители некоторого составного натурального числа <i>n</i>, увеличенные на 1. Найдите все такие числа <i>n</i>, для которых числа на доске окажутся всеми собственными делителями некоторого натурального числа <i>m</i>.
На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>. Известно, что отрезки, высекаемые графиками на <i>l</i><sub>1</sub>, равны, и отрезки, высекаемые графиками на <i>l</i><sub>2</sub>, также равны. Докажите, что графики трёхчленов совпадают.
На доске написаны <i>n</i> > 3 различных натуральных чисел, меньших чем (<i>n</i> – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.
В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город <i>A доступен</i> для города <i>B</i>, если из <i>B</i> можно долететь в <i>A</i>, возможно, с пересадками. Известно, что для любых двух городов <i>P</i> и <i>Q</i> существует город <i>R</i>, для которого и <i>P</i>, и <i>Q</i> доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)