Олимпиадные задачи из источника «2014-2015» для 2-8 класса - сложность 3 с решениями

В неравнобедренном треугольнике <i>ABC</i> провели биссектрисы угла <i>ABC</i> и угла, смежного с ним. Они пересекли прямую <i>AC</i> в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> соответственно. Из точек <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> провели касательные к окружности ω, вписанной в треугольник <i>ABC</i>, отличные от прямой <i>AC</i>. Они касаются ω в точках <i>K</i><sub>1</sub> и <i>K</i><sub>2</sub> соответственно. Докажите, что точки <i>B</i>, <i>K</i><sub>1</sub> и <i>K</i><sub>2</sub> лежат на одной прям...

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  <i>n, n</i> + 1, ..., <i>n</i> + 8.  При каких <i>n</i> он сможет это сделать? <div align="center"><img src="/storage/problem-media/65113/problem_65113_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка