Олимпиадные задачи из источника «Региональный этап» для 2-10 класса - сложность 4 с решениями
Среди натуральных чисел от 1 до 1200 выбрали 372 различных числа так, что никакие два из них не различаются на 4, 5 или 9. Докажите, что число 600 является одним из выбранных.
Для положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> докажите неравенство <img align="absmiddle" src="/storage/problem-media/111769/problem_111769_img_2.gif">
На столе лежат купюры достоинством 1, 2,<i> .. </i>,2<i>n </i>тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?
В треугольнике<i> ABC </i>на стороне<i> BC </i>выбрана точка<i> M </i>так, что точка пересечения медиан треугольника<i> ABM </i>лежит на описанной окружности треугольника<i> ACM </i>, а точка пересечения медиан треугольника<i> ACM </i>лежит на описанной окружности треугольника<i> ABM </i>. Докажите, что медианы треугольников<i> ABM </i>и<i> ACM </i>из вершины<i> M </i>равны.