Олимпиадные задачи из источника «10 Класс» для 8 класса - сложность 2-3 с решениями
10 Класс
НазадВ натуральном числе <i>A</i> переставили цифры, получив число <i>B</i>. Известно, что <img align="top" src="/storage/problem-media/111791/problem_111791_img_2.gif"> Найдите наименьшее возможное значение <i>n</i>.
В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами?
Дано натуральное число <i>n</i> > 6. Рассматриваются натуральные числа, лежащие в промежутке (<i>n</i>(<i>n</i> – 1), <i>n</i>²) и взаимно простые с <i>n</i>(<i>n</i> – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.
В 25 коробках лежат шарики нескольких цветов. Известно, что при любом <i>k</i> (1 ≤ <i>k</i> ≤ 25) в любых <i>k</i> коробках лежат шарики ровно <i>k</i> + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.