Олимпиадные задачи из источника «Заключительный этап» для 11 класса - сложность 2-3 с решениями
Существует ли ограниченная функция<i> f </i>:<i> <img src="/storage/problem-media/109819/problem_109819_img_2.gif"><img src="/storage/problem-media/109819/problem_109819_img_3.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>такая, что<i> f</i>(1)<i>></i>0и<i> f</i>(<i>x</i>)удовлетворяет при всех<i> x,y<img src="/storage/problem-media/109819/problem_109819_img_4.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>неравенству <center><i>
f<sup>2</sup></i>(<i>x+y</i>)<i><img src="/storage/problem-media/109819/problem_109...
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Четырёхугольник <i>ABCD</i> с попарно непараллельными сторонами описан около окружности с центром <i>O</i>. Докажите, что точка <i>O</i> совпадает с точкой пересечения средних линий четырёхугольника <i>ABCD</i> тогда и только тогда, когда <i>OA·OC = OB·OD</i>.