Олимпиадные задачи из источника «1998-1999» для 7-8 класса - сложность 4-5 с решениями
1998-1999
НазадВ микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.
В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).
Окружность, вписанная в четырёхугольник<i> ABCD </i>, касается его сторон<i> DA </i>,<i> AB </i>,<i> BC </i>и<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>и<i> N </i>соответственно. Пусть<i> S</i>1,<i> S</i>2,<i> S</i>3и<i> S</i>4– окружности, вписанные в треугольники<i> AKL </i>,<i> BLM </i>,<i> CMN </i>и<i> DNK </i>соответственно. К окружностям<i> S</i>1и<i> S</i>2,<i> S</i>2и<i> S</i>3,<i> S</i>3и<i> S</i>4,<i> S</i>4и<i> S</i>1проведены общие касательные, отличные от сторон четырёхугол...
Пусть окружность, вписанная в треугольник<i> ABC </i>, касается его сторон<i> AB </i>,<i> BC </i>и<i> AC </i>в точках<i> K </i>,<i> L </i>и<i> M </i>соответственно. К окружностям, вписанным в треугольники<i> BKL </i>,<i> CLM </i>и<i> AKM </i>проведены попарно общие внешние касательные, отличные от сторон треугольника<i> ABC </i>. Докажите, что эти касательные пересекаются в одной точке.