Олимпиадные задачи из источника «1994-1995» для 2-8 класса - сложность 4 с решениями

Известно, что  <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение  <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Окружности<i> S</i>1и<i> S</i>2с центрами<i> O</i>1и<i> O</i>2пересекаются в точках<i> A </i>и<i> B </i>(см рис.). Луч<i> O</i>1<i>B </i>пересекает окружность<i> S</i>2в точке<i> F </i>, а луч<i> O</i>2<i>B </i>пересекает окружность<i> S</i>1в точке<i> E </i>. Прямая, проходящая через точку<i> B </i>параллельно прямой<i> EF </i>, вторично пересекает окружности<i> S</i>1и<i> S</i>2в точках<i> M </i>и<i> N </i>соответственно. Докажите, что<i> MN=AE+AF </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка