Олимпиадные задачи из источника «Региональный этап» - сложность 4 с решениями

Внутри круга расположены точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>n</sub></i>, а на его границе – точки <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B<sub>n</sub></i> так, что отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>A</i><sub>2</sub><i>B</i><sub>2</sub>, ..., <i>A<sub>n</sub>B<sub>n</sub></i> не пересекаются. Кузнечик может перепрыгнуть из точки <i>A<sub>i</sub></i> в точку <i>A<sub>j</sub></i>, если отрезок <i>A<sub>...

На боковых ребрах<i> SA </i>,<i> SB </i>и<i> SC </i>правильной треугольной пирамиды<i> SABC </i>взяты соответственно точки<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>и<i> C<sub>1</sub> </i>так, что плоскости<i> A<sub>1</sub>B<sub>1</sub>C<sub>1</sub> </i>и<i> ABC </i>параллельны. Пусть<i> O </i>– центр сферы, проходящей через точки<i> S </i>,<i> A </i>,<i> B </i>и<i> C<sub>1</sub> </i>. Докажите, что прямая<i> SO </i>перпендикулярна плоскости<i> A<sub>1</sub>B<sub>1</sub>C </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка