Олимпиадные задачи из источника «Региональный этап» - сложность 4-5 с решениями
В колоде<i> n </i>карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
У каждого из жителей города<i> N </i>знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города<i> N </i>из двух кандидатов, что в них примет участие не менее половины жителей.
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.
Дан правильный треугольник<i> ABC </i>. Через вершину<i> B </i>проводится произвольная прямая<i> l </i>, а через точки<i> A </i>и<i> C </i>проводятся прямые, перпендикулярные прямой<i> l </i>, пересекающие её в точках<i> D </i>и<i> E </i>. Затем, если точки<i> D </i>и<i> E </i>различны, строятся правильные треугольники<i> DEP </i>и<i> DET </i>, лежащие по разные стороны от прямой<i> l </i>. Найдите геометрическое место точек<i> P </i>и<i> T </i>.