Олимпиадные задачи из источника «46 (2023), математика» - сложность 3 с решениями
46 (2023), математика
НазадСуществует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.
Рассмотрим различные прямоугольники периметра 10, лежащие внутри квадрата со стороной 10. Чему равна наибольшая возможная площадь закрашенной звёздочки (см. рисунок)? Ответ округлите до двух знаков после запятой.<img width="300" src="/storage/problem-media/67275/problem_67275_img_2.png">