Олимпиадные задачи из источника «весенний тур, основной вариант, 9-10 класс» для 6-8 класса - сложность 2 с решениями
весенний тур, основной вариант, 9-10 класс
НазадПри каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.
Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)