Олимпиадные задачи из источника «осенний тур, 9-10 класс» для 4-9 класса - сложность 2 с решениями
осенний тур, 9-10 класс
НазадДана трапеция <i>ABCD</i>, <i>M</i> – точка пересечения её диагоналей. Известно, что боковая сторона <i>AB</i> перпендикулярна основаниям <i>AD</i> и <i> BC</i> и что в трапецию можно вписать окружность. Найдите площадь треугольника <i> DCM</i>, если радиус этой окружности равен <i>r</i>.
Через <i>n</i>!! обозначается произведение <i>n</i>(<i>n</i> – 2)(<i>n</i> – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Докажите, что 1985!! + 1986!! делится на 1987.
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
Существует ли такое <i>N</i> и такие <i>N</i> – 1 бесконечных арифметических прогрессий с разностями 2, 3, 4, ..., <i>N</i>, что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?