Олимпиадные задачи из источника «6 турнир (1984/1985 год)» для 10-11 класса - сложность 3-4 с решениями
6 турнир (1984/1985 год)
Назада) Квадрат разбит на прямоугольники. <i>Цепочкой</i> называется такое подмножество <i>K</i> множества этих прямоугольников, что существует сторона <i>S</i> квадрата, целиком закрытая проекциями прямоугольников из <i>K</i>, но при этом ни в какую точку <i>S</i> не проектируются внутренние точки двух прямоугольников из <i>K</i> (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку. б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
а) Можно ли это сделать так, чтобы в каждой строке и в каждом столбце встречалось не более четырёх различных цифр?
б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.
Набор чисел <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A</i><sub>100</sub> получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
<i>B</i><sub>1</sub> = <i>A</i><sub>1</sub>, <i>B</i><sub>2</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2</sub>, <i>B</i><sub>3</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2</sub> + <i>A</i><sub>3</sub>, ..., <i>B</i><sub>100</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2...