Олимпиадные задачи из источника «осенний тур, 9-10 класс» - сложность 3 с решениями

Около остроугольного треугольника <i>ABC</i> описана окружность с центром <i>O</i>. Перпендикуляры, опущенные из точки <i>O</i> на стороны треугольника, продолжены до пересечения с окружностью в точках <i>K</i>, <i>M</i> и <i>P</i>. Докажите, что   <img src="/storage/problem-media/108605/problem_108605_img_2.gif">   где <i>Q</i> – центр вписанной окружности треугольника <i>ABC</i>.

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  – возрастающая последовательность натуральных чисел. Известно, что  <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i>  для любого <i>k</i>.

Найти   а)  <i>a</i><sub>100</sub>;   б)  <i>a</i><sub>1983</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка