Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 3 с решениями

Назовём ходы коня, при которых он смещается на две клетки по горизонтали и на одну по вертикали,<i>горизонтальными</i>, а остальные —<i>вертикальными</i>. Требуется поставить коня на одну из клеток доски $46\times46$, после чего чередовать им горизонтальные и вертикальные ходы. Докажите, что если запрещено посещать клетки более одного раза, то будет сделано не более 2024 ходов.

В остроугольном треугольнике $ABC$ отмечены точки $I$ и $O$ — центры вписанной и описанной окружностей соответственно. Прямые $AI$ и $CI$ вторично пересекают описанную окружность треугольника $ABC$ в точках $N$ и $M$. Отрезки $MN$ и $BO$ пересекаются в точке $X$. Докажите, что прямые $XI$ и $AC$ перпендикулярны.<img height="250" src="/storage/problem-media/67486/problem_67486_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка