Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 2 с решениями
осенний тур, сложный вариант, 8-9 класс
НазадНа столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.) <div align="center"><img src="/storage/problem-media/67049/problem_67049_img_2.png"></div>
В ряд записаны $n > 2$ различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?