Олимпиадные задачи из источника «42 турнир (2020/2021 год)» для 2-9 класса - сложность 3 с решениями

Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?

Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел.

Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.

Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.

Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.

На клетчатой доске лежат доминошки, не касаясь даже углами. Каждая доминошка занимает две соседние (по стороне) клетки доски. Нижняя левая и правая верхняя клетки доски свободны. Всегда ли можно пройти из левой нижней клетки в правую верхнюю, делая ходы только вверх и вправо на соседние по стороне клетки и не наступая на доминошки, если доска имеет размеры а) $100\times101$ клеток; б) $100\times100$ клеток?

Окружности $\alpha$ и $\beta$ с центрами в точках $A$ и $B$ соответственно пересекаются в точках $C$ и $D$. Отрезок $AB$ пересекает окружности $\alpha$ и $\beta$ в точках $K$ и $L$ соответственно. Луч $DK$ вторично пересекает окружность $\beta$ в точке $N$, а луч $DL$ вторично пересекает окружность $\alpha$ в точке $M$. Докажите, что точка пересечения диагоналей четырёхугольника $KLMN$ совпадает с центром вписанной окружности треугольника $ABC$.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?

По кругу лежит 101 монета, каждая весит 10 г или 11 г. Докажите, что найдётся монета, для которой суммарная масса $k$ монет слева от неё равна суммарной массе $k$ монет справа от неё, если а) k=50; б) k=49.

Стороны треугольника разделены основаниями биссектрис на два отрезка каждая. Обязательно ли из шести образовавшихся отрезков можно составить два треугольника?

Натуральное число $N$ кратно 2020. В его десятичной записи все цифры различны, причём если любые две из них поменять местами, получится число, не кратное 2020. При каком количестве цифр в десятичной записи числа $N$ такое возможно?

Директор зоопарка приобрёл восемь слонов с номерами 1, 2, ..., 8. Какие у них были массы, он забыл, но запомнил, что масса каждого слона, начиная с третьего, равнялась сумме масс двух предыдущих. Вдруг до директора дошёл слух, что один слон похудел. Как ему за два взвешивания на чашечных весах без гирь найти этого слона или убедиться, что это всего лишь слух? (Ему известно, что ни один слон не потолстел, а похудеть мог максимум один.)

В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?

Дан равносторонний треугольник со стороной $d$ и точка $P$, расстояния от которой до вершин треугольника равны положительным числам $a$, $b$ и $с$. Докажите, что найдётся равносторонний треугольник со стороной $a$ и точка $Q$, расстояния от которой до вершин этого треугольника равны $b$, $с$ и $d$.

В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно<i>действие</i>съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый<i>ход</i>делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина?

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка