Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» - сложность 4 с решениями
осенний тур, сложный вариант, 10-11 класс
НазадПетя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему?
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?