Олимпиадные задачи из источника «42 турнир (2020/2021 год)» - сложность 4 с решениями
42 турнир (2020/2021 год)
НазадСуществует ли описанный 2021-угольник, все вершины и центр вписанной окружности которого имеют целочисленные координаты?
Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$. Докажите, что
а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно;
б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.
Найдите хоть одно вещественное число $A$ со свойством: для любого натурального $n$ расстояние от верхней целой части числа $A^n$ до ближайшего квадрата целого числа равно 2. (Верхняя целая часть числа $x$ – наименьшее целое число, не меньшее $x$.)
Петя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему?
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?
Существуют ли 100 таких натуральных чисел, среди которых нет одинаковых, что куб одного из них равен сумме кубов остальных?
Пентамино «крест» состоит из пяти квадратиков $1\times1$ (четыре квадратика примыкают по стороне к пятому). Можно ли из шахматной доски $8\times8$ вырезать, не обязательно по клеткам, девять таких крестов?<img src="/storage/problem-media/66878/problem_66878_img_2.png">
Петя и Вася играют в такую игру. Каждым ходом Петя называет какое-то целое число, а Вася записывает на доску либо названное число, либо сумму этого числа и всех ранее написанных чисел. Всегда ли Петя сможет добиться того, чтобы в какой-то момент на доске среди написанных чисел было а) хотя бы сто чисел 5; б) хотя бы сто чисел 10?
Назовём пару различных натуральных чисел<i>удачной</i>, если их среднее арифметическое (полусумма) и среднее геометрическое (квадратный корень из произведения) — натуральные числа. Верно ли, что для каждой удачной пары найдётся другая удачная пара с тем же средним арифметическим? (Пояснение: пары $(a,b)$ и $(b,a)$ считаются одинаковыми.)
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.