Олимпиадные задачи из источника «9-10 класс» - сложность 3 с решениями
9-10 класс
НазадВнутри правильного <i>n</i>-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2<i>n</i> отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2<i>n</i>. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.
Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет. Сначала у каждого чётное количество конфет. По команде каждый передает половину своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное количество конфет, то ему извне добавляется одна конфета. Это повторяется много раз. Доказать, что настанет время, когда у всех будет поровну конфет.
В Швамбрании <i>N</i> городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение <i>N</i>! способами.
Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.