Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» для 11 класса - сложность 3-5 с решениями
осенний тур, сложный вариант, 10-11 класс
НазадНа плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Существуют ли такие две функции <i>f</i> и <i>g</i>, принимающие только целые значения, что для любого целого <i>x</i> выполнены соотношения:
а) <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x, g</i>(<i>g</i>(<i>x</i>)) = <i>x, f</i>(<i>g</i>(<i>x</i>)) > <i>x, g</i>(<i>f</i>(<i>x</i>)) > <i>x</i>?
б) <i>f</i>(<i>f</i>(<i>x</i>)) < <i>x, g</i>(<i>g</i>(<i>x</i>)) < <i>x</i>, <i>f</i>(<i>g</i>(<i>x</i>)) > <i>x, g</i>(<i>f</i>(<i>x&...
Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?
Дан правильный треугольник <i>ABC</i> с центром <i>O</i>. Прямая, проходящая через вершину <i>C</i>, пересекает описанную окружность треугольника <i>AOB</i> в точках <i>D</i> и <i>E</i>. Докажите, что точки <i>A, O</i> и середины отрезков <i>BD, BE</i> лежат на одной окружности.
Каждое ли целое число можно записать как сумму кубов нескольких целых чисел, среди которых нет одинаковых?