Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс»

Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?

Дан остроугольный треугольник <i>ABC</i>; <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> – его высоты. Из точки <i>A</i><sub>1</sub> опустили перпендикуляры на прямые <i>AC</i> и <i>AB</i>, а из точки <i>B</i><sub>1</sub> опустили перпендикуляры на прямые <i>BC</i> и <i>BA</i>. Докажите, что основания перпендикуляров образуют равнобокую трапецию.

Докажите, что для любого натурального числа <i>N</i> найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в <i>N</i> раз.

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.

Найдите сумму абсцисс точек пересечения этих прямых с прямой  <i>y</i> = 100 – <i>x</i>.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка