Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» для 10-11 класса - сложность 1-3 с решениями

На сторонах <i>AC</i> и <i>BC</i> неравнобедренного треугольника <i>ABC</i> во внешнюю сторону построены как на основаниях равнобедренные треугольники <i>AB'C</i> и <i>CA'B</i> с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины <i>C</i> к отрезку <i>A'B'</i>, пересекает серединный перпендикуляр к отрезку <i>AB</i> в точке <i>C</i><sub>1</sub>. Найдите угол <i>AC</i><sub>1</sub><i>B</i>.

Даны положительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>.  Известно, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½.  Докажите, что  (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.

Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка