Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс»

Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.

Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно. Пусть <i>RS</i> – средняя линия треугольника, параллельная <i>AB, T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника.

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.

Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.

2<i>n</i> радиусов разделили круг на 2<i>n</i> равных секторов: <i>n</i> синих и <i>n</i> красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до <i>n</i>. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до <i>n</i>.

Играют двое. Первый выписывает в строку слева направо цифры, произвольно чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как первый выписал очередную цифру, второй меняет между собой две цифры из уже написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка