Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс» для 10 класса - сложность 1-5 с решениями

  а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)

  б) Тот же вопрос про шесть кубов.

На доске выписаны числа 1, ½, &frac13;, ..., <sup>1</sup>/<sub>100</sub>. Выбираем из написанных на доске два произвольных числа <i>a</i> и <i>b</i>, стираем их и пишем на доску число

<i>a + b + ab</i>.  Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка