Олимпиадные задачи из источника «весенний тур, основной вариант, 7-8 класс» - сложность 2-3 с решениями

Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?

а) Докажите, что если в 3<i>n</i> клетках таблицы 2<i>n</i>×2<i>n</i> расставлены 3<i>n</i> звёздочек, то можно вычеркнуть <i>n</i> столбцов и <i>n</i> строк так, что все звёздочки будут вычеркнуты.

б) Докажите, что в таблице 2<i>n</i>×2<i>n</i> можно расставить  3<i>n</i> + 1  звёздочку так, что при вычеркивании любых <i>n</i> строк и любых <i>n</i> столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Из центра окружности выходят <i>N</i> векторов, концы которых делят её на <i>N</i> равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.

Докажите, что если <i>K</i> чётно, то числа от 1 до  <i>K</i> – 1  можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на <i>K</i>.

Выпуклые четырёхугольники <i>ABCD</i> и <i>PQRS</i> вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:

    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;

    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.

  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,

либо диагонали перпендикулярны.

  б) Докажите, что если <i>ABCD</i> – параллелограмм, то можно сделать подходящий к нему картонный четырёхуголь...

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка