Олимпиадные задачи из источника «XVII Олимпиада по геометрии имени И.Ф. Шарыгина (2021 г.)» для 10 класса - сложность 1-2 с решениями
XVII Олимпиада по геометрии имени И.Ф. Шарыгина (2021 г.)
НазадПродолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ пересекаются в точке $S$. Точки $X$, $Y$ на биссектрисе угла $S$ таковы, что $\angle AXC-\angle AYC=\angle ASC$. Докажите, что $\angle BXD-\angle BYD=\angle BSD$.
В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$.
Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.
Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.
Рассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
Есть набор монет радиусами $1, 2, 3,\ldots, 10$ см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
Дан квадрат $ABCD$ с центром $O$. Из точки $P$, лежащей на меньшей дуге $CD$ описанной около квадрата окружности, проведены касательные к его вписанной окружности, пересекающие сторону $CD$ в точках $M$ и $N$. Прямые $PM$ и $PN$ пересекают отрезки $BC$ и $AD$ соответственно в точках $Q$ и $R$. Докажите, что медиана треугольника $OMN$ из вершины $O$ перпендикулярна отрезку $QR$ и равна его половине.
Высоты $AA_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$; $B_0$ – середина стороны $AC$. Прямая, проходящая через вершину $B$ параллельно $AC$, пересекает прямые $B_0A_1$, $B_0C_1$ в точках $A'$, $C'$ соответственно. Докажите, что прямые $AA'$, $CC'$, $BH$ пересекаются в одной точке.
Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.
Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.