Олимпиадные задачи из источника «Заочный тур» для 8 класса
Заочный тур
НазадРассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
Есть набор монет радиусами $1, 2, 3,\ldots, 10$ см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. (<i> Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника</i>.)
В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.
В равнобедренном треугольнике $ABC$ ($AB=BC$) проведен луч $l$ из вершины $B$. На луче внутри треугольника взяты точки $P$ и $Q$ так, что $\angle BAP=\angle QCA$. Докажите, что $\angle PAQ=\angle PCQ$.
В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.
В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
Дан квадрат $ABCD$ с центром $O$. Из точки $P$, лежащей на меньшей дуге $CD$ описанной около квадрата окружности, проведены касательные к его вписанной окружности, пересекающие сторону $CD$ в точках $M$ и $N$. Прямые $PM$ и $PN$ пересекают отрезки $BC$ и $AD$ соответственно в точках $Q$ и $R$. Докажите, что медиана треугольника $OMN$ из вершины $O$ перпендикулярна отрезку $QR$ и равна его половине.
Высоты $AA_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$; $B_0$ – середина стороны $AC$. Прямая, проходящая через вершину $B$ параллельно $AC$, пересекает прямые $B_0A_1$, $B_0C_1$ в точках $A'$, $C'$ соответственно. Докажите, что прямые $AA'$, $CC'$, $BH$ пересекаются в одной точке.
Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.
Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.