Олимпиадные задачи из источника «XVI Олимпиада по геометрии имени И.Ф. Шарыгина (2020 г.)» - сложность 3-4 с решениями
XVI Олимпиада по геометрии имени И.Ф. Шарыгина (2020 г.)
НазадПусть $I$ – центр сферы, вписанной в тетраэдр $ABCD$, а $J$ – центр сферы, касающейся грани $BCD$ и плоскостей остальных граней (вне самих граней). Отрезок $IJ$ пересекает сферу, описанную около тетраэдра, в точке $K$. Что больше: $IK$ или $JK$?
Назовем <i>почти выпуклым</i> несамопересекающийся многоугольник, у которого ровно один внутренний угол больше $180^\circ$.
На плоскости даны $1000000$ точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых $1000000$-угольников с вершинами в этих точках?
Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
Диагонали вписанно-описанного четырехугольника $ABCD$ пересекаются в точке $L$. Даны три отрезка, равные $AL$, $BL$, $CL$. Восстановите четырехугольник с помощью циркуля и линейки.
К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
В четырехугольнике $ABCD$ $AB\perp CD$ и $AD\perp BC$. Докажите, что существует точка, расстояния от которой до прямых, содержащих стороны четырехугольника, пропорциональны этим сторонам.
Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.
Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$.
В треугольнике $ABC$ чевианы $AP$ и $AQ$ симметричны относительно биссектрисы. Точки $X$, $Y$ – проекции $B$ на $AP$ и $AQ$ соответственно, а точки $N$ и $M$ – проекции $C$ на $AP$ и $AQ$ соответственно. Докажите, что $XM$ и $NY$ пересекаются на $BC$.
Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.
Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
В неравнобедренном треугольнике $ABC$ $H$ – ортоцентр. Биссектриса угла $BHC$ пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$ соответственно. Перпендикуляры, восставленные к $AB$ и $AC$ из $P$ и $Q$, пересекаются в точке $K$. Докажите, что прямая $KH$ делит отрезок $BC$ пополам.
В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$.
Две окружности пересекаются в точках $P$ и $R$. Через точку $P$ проведены прямые $l_1$, $l_2$. Прямая $l_1$ вторично пересекает окружности в точках $A_1$ и $B_1$. Касательные в этих точках к описанной окружности треугольника $A_1RB_1$ пересекаются в точке $C_1$. Прямая $C_1R$ пересекает $A_1B_1$ в точке $D_1$. Аналогично определены точки $A_2$, $B_2$, $C_2$, $D_2$. Докажите, что окружности $D_1D_2P$ и $C_1C_2R$ касаются.
В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.