Олимпиадные задачи из источника «XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)» для 3-10 класса - сложность 4 с решениями
XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)
НазадДаны два треугольника $ABC$ и $A'B'C'$. Прямые $AB$ и $A'B'$ пересекаются в точке $C_1$, а параллельные им прямые, проходящие через $C$ и $C'$, соответственно, в точке $C_2$. Точки $A_1$, $A_2$, $B_1$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
На плоскости дано конечное множество $S$ точек, окрашенных в красный и зеленый цвета. Назовем множество<i>разделимым</i>, если для него найдется такой треугольник, что все точки одного цвета лежат строго внутри, а все точки другого – строго вне треугольника. Известно, что любые 1000 точек из $S$ образуют разделимое множество. Обязательно ли все множество $S$ разделимо?
Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.
Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?
На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.
Дан неравнобедренный треугольник $ABC$. Вписанная окружность касается его сторон $AB$, $AC$ и $BC$ в точках $D$, $E$, $F$ соответственно. Вневписанная окружность касается стороны $BC$ в точке $N$. Пусть $T$ – ближайшая к $N$ точка пересечения прямой $AN$ с вписанной окружностью, а $K$ – точка пересечения прямых $DE$ и $FT$. Докажите, что $AK||BC$.
На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.
Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.