Олимпиадные задачи из источника «II Олимпиада по геометрии имени И.Ф. Шарыгина (2006 г.)» для 11 класса - сложность 2-5 с решениями

Дан выпуклый четырехугольник<i> ABCD </i>.<i> A' </i>,<i> B' </i>,<i> C' </i>,<i> D' </i>– ортоцентры треугольников<i> BCD </i>,<i> CDA </i>,<i> DAB </i>,<i> ABC </i>. Докажите, что в четырехугольниках<i> ABCD </i>и<i> A'B'C'D' </i>соответствующие диагонали делятся точками пересечения в одном и том же отношении.

Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> подобны и по-разному ориентированы. На отрезке <i>AA</i><sub>1</sub> взята такая точка <i>A'</i>, что  <i>AA'</i> : <i>A</i><sub>1</sub><i>A' = BC</i> : <i>B</i><sub>1</sub><i>C</i><sub>1</sub>.  Аналогично строим <i>B'</i> и <i>C'</i>. Докажите, что <i>A', B'</i> и <i>C'</i> лежат на одной прямой.

Дана окружность, точка<i> A </i>на ней и точка<i> M </i>внутри нее. Рассматриваются хорды<i> BC </i>, проходящие через<i> M </i>. Докажите, что окружности, проходящие через середины сторон всех треугольников<i> ABC </i>, касаются некоторой фиксированной окружности.

Дан треугольник<i> ABC </i>и точка<i> P </i>внутри него.<i> A' </i>,<i> B' </i>,<i> C' </i>– проекции<i> P </i>на прямые<i> BC </i>,<i> CA </i>,<i> AB </i>. Докажите, что центр окружности, описанной около треугольника<i> A'B'C' </i>, лежит внутри треугольника<i> ABC </i>.

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?

Дана окружность и точка<i> P </i>внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке<i> P </i>. Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка