Олимпиадные задачи из источника «2012 год» для 3-5 класса - сложность 2-4 с решениями
На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?
Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка. <div align="center"><img src="/storage/problem-media/116866/problem_116866_img_2.gif"></div>
На блюде лежали 15 плюшек. Карлсон взял себе в три раза больше плюшек, чем Малыш, а собака Малыша Бимбо – в три раза меньше, чем Малыш. Сколько плюшек осталось на блюде?
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час?
Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.<div align="center"><img src="/storage/problem-media/116859/problem_116859_img_2.gif"></div>