Олимпиадные задачи из источника «2007 год» для 5 класса - сложность 2 с решениями

На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?

Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.

Вырежьте из фигуры, изображенной на рисунке, одну клетку и разрежьте оставшуюся фигуру на четыре равные части. <img src="/storage/problem-media/109474/problem_109474_img_2.gif">

На клетчатой бумаге нарисован квадрат со стороной5клеток. Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата только по линиям сетки. Может ли оказаться так, что суммарная длина проведенных отрезков не превосходит 16 клеток?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка