Олимпиадные задачи из источника «2007 год» для 2-6 класса - сложность 2 с решениями
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.
Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон. За какое время зал опустеет, если включить третий эскалатор?
Вырежьте из фигуры, изображенной на рисунке, одну клетку и разрежьте оставшуюся фигуру на четыре равные части. <img src="/storage/problem-media/109474/problem_109474_img_2.gif">
На клетчатой бумаге нарисован квадрат со стороной5клеток. Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата только по линиям сетки. Может ли оказаться так, что суммарная длина проведенных отрезков не превосходит 16 клеток?