Олимпиадные задачи из источника «06 (2008 год)» для 10 класса - сложность 2-3 с решениями
06 (2008 год)
НазадЕсть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
Cуществует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?
B треугольнике <i>ABC</i> угол <i>A</i> равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно <i>AB + AC</i>.
Дан четырёхугольник <i>ABCD. A', B', C'</i> и <i>D'</i> – середины сторон <i>BC, CD, DA</i> и <i>AB</i> соответственно. Известно, что <i>AA' = CC'</i> и <i>BB'</i> = <i>DD'</i>.
Bерно ли, что <i>ABCD</i> – параллелограмм?
Даны радиусы <i>r</i> и <i>R</i> двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Hайдите площадь треугольника, ограниченного этими касательными, а также общей внешней касательной.