Олимпиадные задачи из источника «6 (2008 год)»

В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)

Предложенные вам четыре одинаковые фигуры (рис. слева) требуется уложить в шестиугольник (рис. справа) так, чтобы они не выступали за его границы и не накладывались друг на друга (даже частично).<div align="center"><img src="/storage/problem-media/64383/problem_64383_img_2.png"></div>

Артём коллекционирует монеты. В его коллекции 27 монет, причём все они имеют различный диаметр, различную массу и были выпущены в разные годы. Каждая монета хранится в отдельном спичечном коробке. Может ли Артём сложить из этих коробков параллелепипед 3×3×3 так, чтобы любая монета была легче монеты, находящейся под ней, меньше монеты справа от нее и древнее той, которая находится перед ней?

Толстый выпуск газеты стоит 30 рублей, а тонкий – дешевле. Для пенсионеров установлена скидка на одно и то же количество процентов на все газеты, поэтому тонкий выпуск той же газеты они покупают за 15 рублей. Известно, что в любом случае газета стоит целое количество рублей. Сколько стоит тонкая газета без скидки и сколько стоит толстая газета для пенсионеров?

Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?<div align="center"><img src="/storage/problem-media/64380/problem_64380_img_2.png"><img src="/storage/problem-media/64380/problem_64380_img_3.png"></div>

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Мальвина попросила Буратино выписать все девятизначные числа, составленные из различных цифр. Буратино забыл, как пишется цифра 7, поэтому записал только те девятизначные числа, в которых этой цифры нет. Затем Мальвина предложила ему вычеркнуть из каждого числа по шесть цифр так, чтобы оставшееся трёхзначное число было простым. Буратино тут же заявил, что это возможно не для всех записанных чисел. Прав ли он?

Квадрат разрезали на двенадцать прямоугольных треугольников.

Могут ли десять из них оказаться равными друг другу, а два оставшихся – отличаться и от них, и друг от друга?

После утренней пробежки Карлсон худеет на килограмм, а к вечеру (после поедания плюшек) его вес увеличивается на треть. К вечеру третьего дня (после того, как он начал бегать) Карлсон обнаружил, что поправился вдвое. Сколько он весил до того, как начал заниматься спортом?

В левом нижнем углу клетчатой доски <i>n</i>&times<i>n</i> стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите <i>n</i>.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные. Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

Ювелир изготовил 6 одинаковых по виду серебряных украшений массой 22 г, 23 г, 24 г, 32 г, 34 г и 36 г и поручил своему подмастерью выбить на каждом украшении его массу. Может ли ювелир за два взвешивания на чашечных весах без стрелок и гирек определить, не перепутал ли подмастерье украшения?

Найдите наибольшее число цветов, в которые можно покрасить рёбра куба (каждое ребро одним цветом) так, чтобы для каждой пары цветов нашлись два соседних ребра, покрашенные в эти цвета. Соседними считаются рёбра, имеющие общую вершину.

У папы Карло есть 130 дощечек. Из 5 дощечек он может сделать игрушечную мельницу, из 7 дощечек – пароход, из 14 дощечек – самолёт. Самолёт стоит 19 золотых, пароход – 8 золотых, мельница – 6 золотых. Какое наибольшее количество золотых может заработать папа Карло?

В школе колдовства 13 учеников. Перед экзаменом по ясновидению преподаватель посадил их за круглый стол и попросил угадать, кто получит диплом ясновидящего. Про себя и двух своих соседей все скромно умолчали, а про всех остальных написали: "Никто из этих десяти не получит!" Конечно же, все сдавшие экзамен угадали, а все остальные ученики ошиблись. Сколько колдунов получили диплом?

Давным-давно страной Тарнией правил царь Ятианр. Чтобы тарнийцы поменьше рассуждали, он придумал для них простой язык. Его алфавит состоял всего из шести букв: А, И, Н, Р, Т, Я, но порядок их отличался от принятого в русском языке. Словами этого языка были все последовательности, использующие каждую из этих букв по одному разу. Ятианр издал полный словарь нового языка. В соответствии с алфавитом первым словом словаря оказалось "Тарния". Какое слово следовало в словаре за именем Ятианр?

Разрежьте фигуру с вырезанным квадратиком на две одинаковые части, из которых можно составить вторую фигуру. Части разрешается и поворачивать, и переворачивать.<div align="center"><img src="/storage/problem-media/64368/problem_64368_img_2.png"></div>

Винни-Пух, Пятачок, Кролик и ослик Иа-Иа опустошили бочонок меда. При этом Пятачок съел половину того, что съел Винни-Пух, Кролик – половину того, что не съел Винни-Пух, а ослику Иа-Иа досталась лишь десятая часть бочонка. Какая часть бочонка досталась Кролику?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка