Олимпиадные задачи из источника «6 (2008 год)» - сложность 3 с решениями
В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1 очко, ничья – ½ очка, поражение – 0 очков.)
В левом нижнем углу клетчатой доски <i>n</i>×<i>n</i> стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите <i>n</i>.
Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные. Известно, что Э·Х = M·О·Р·О·З, а Э + Х = М + О + Р + О + З. Чему равно Э·Х + M·О·Р·О·З?
Ювелир изготовил 6 одинаковых по виду серебряных украшений массой 22 г, 23 г, 24 г, 32 г, 34 г и 36 г и поручил своему подмастерью выбить на каждом украшении его массу. Может ли ювелир за два взвешивания на чашечных весах без стрелок и гирек определить, не перепутал ли подмастерье украшения?
Найдите наибольшее число цветов, в которые можно покрасить рёбра куба (каждое ребро одним цветом) так, чтобы для каждой пары цветов нашлись два соседних ребра, покрашенные в эти цвета. Соседними считаются рёбра, имеющие общую вершину.