Олимпиадные задачи из источника «9 класс» для 5-8 класса - сложность 1-3 с решениями
9 класс
НазадКаждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?<img src="/storage/problem-media/67451/problem_67451_img_2.png">
Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 6 других?
Можно ли расставить девять различных целых чисел в клетки таблицы $3 \times 3$ так, чтобы произведение чисел в каждой строке равнялось $2025$ и произведение чисел в каждом столбце тоже равнялось $2025$?