Олимпиадные задачи из источника «2023 год» для 10 класса - сложность 3 с решениями
Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$.
В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока<i>упорным</i>, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём<i>неупорными</i>. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины?
Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.
Пусть $ABCD$ — параллелограмм, отличный от прямоугольника, а точка $P$ выбрана внутри него так, что описанные окружности треугольников $PAB$ и $PCD$ имеют общую хорду, перпендикулярную $AD$. Докажите, что радиусы данных окружностей равны.
В эстафетном забеге Москва—Петушки участвовали две команды по $20$ человек. Каждая из команд по-своему разделила дистанцию на $20$ не обязательно равных отрезков и распределила их между участниками так, чтобы каждый бежал ровно один отрезок (скорость каждого участника постоянна, но скорости разных участников могут быть различны). Первые участники обеих команд стартовали одновременно, а передача эстафеты происходит мгновенно. Какое максимальное количество обгонов могло быть в таком забеге? Опережение на границе этапов обгоном не считается.
Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую)<i>хорошей</i>, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.