Олимпиадные задачи из источника «10 класс»

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими? Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)

На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.

На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится?

В эстафетном забеге Москва—Петушки участвовали две команды по $20$ человек. Каждая из команд по-своему разделила дистанцию на $20$ не обязательно равных отрезков и распределила их между участниками так, чтобы каждый бежал ровно один отрезок (скорость каждого участника постоянна, но скорости разных участников могут быть различны). Первые участники обеих команд стартовали одновременно, а передача эстафеты происходит мгновенно. Какое максимальное количество обгонов могло быть в таком забеге? Опережение на границе этапов обгоном не считается.

Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.

Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка