Олимпиадные задачи из источника «2020 год» - сложность 3-5 с решениями
Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$.
На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$?
На доске написаны $2n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на сумму и разность чисел этой пары (не обязательно вычитать из большего числа меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $2n$ последовательных чисел.
Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$?
Для каких $k$ можно закрасить на белой клетчатой плоскости несколько клеток (конечное число, большее нуля) в черный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно $k$ черных клеток, либо вовсе не было черных клеток?
На доске написаны $1000$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $1000$ последовательных целых чисел.
Точка $O$ — центр описанной окружности треугольника $ABC$. Серединный перпендикуляр к $BC$ пересекает $AB$ и $AC$ в точках $X$ и $Y$. Прямая $AO$ пересекает прямую $BC$ в точке $D$, $M$ — середина $BC$. Описанная окружность треугольника $ADM$ пересекает описанную окружность треугольника $ABC$ в точке $E$, отличной от $A$. Докажите, что прямая $OE$ касается описанной окружности треугольника $AXY$.
Глеб задумал натуральные числа $N$ и $a$, $a < N$. Число $a$ он написал на доске. Затем он начал выполнять следующую операцию: делить $N$ с остатком на последнее выписанное на доску число, а полученный остаток от деления также записывать на доску. Когда на доске появилось число $0$, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных чисел была больше $100 N$?
К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)
В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?
Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая.
В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?