Олимпиадные задачи из источника «2019 год» - сложность 2 с решениями
На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7.
Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA'</i> и <i>BB'</i>. Точка <i>O</i> – центр окружности, описанной около треугольника <i>ABC</i>. Докажите, что расстояние от точки <i>A'</i> до прямой <i>B'</i> равно расстоянию от точки <i>B'</i> до прямой <i>A'</i>.
Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Про трапецию <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> известно, что <i>AB = BD</i>. Пусть точка <i>M</i> – середина боковой стороны <i>CD</i>, а <i>O</i> – точка пересечения отрезков <i>AC</i> и <i>BM</i>. Докажите, что треугольник <i>BOC</i> – равнобедренный.
Найдите наименьшее натуральное число <i>n</i>, для которого <i>n</i><sup>2</sup> + 20<i>n</i> + 19 делится на 2019.
Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)