Олимпиадные задачи из источника «2001 год» для 11 класса - сложность 2-3 с решениями
Приведите пример многочлена <i>P</i>(<i>x</i>) степени 2001, для которого <i>P</i>(<i>x</i>) + <i>P</i>(1 – <i>x</i>) ≡ 1.
Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника <i>A</i> было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и <i>коэффициент силы</i> по формуле: сумма очков тех участников, у кого <i>A</i> выиграл, минус сумма очков тех, кому он проиграл.
а) Могут ли коэффициенты силы всех участников быть больше 0?
б) Могут ли коэффициенты силы всех участников быть меньше 0?