Олимпиадные задачи из источника «11 класс»
11 класс
НазадВ неравнобедреном треугольнике <i>ABC</i> точка <i>I</i> – центр вписанной окружности, <i>I'</i> – центр окружности, касающейся стороны <i> AB </i> и продолжений сторон <i>CB</i> и <i>CA; L</i> и <i>L'</i> – точки, в которых сторона <i>AB</i> касается этих окружностей.
Докажите, что прямые <i>IL', I'L</i> и высота <i>CH</i> треугольника <i>ABC</i> пересекаются в одной точке.
По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом <i>p</i> является простым числом.
Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?