Олимпиадные задачи из источника «10 класс»
10 класс
НазадДан равносторонний треугольник <i>ABC</i>. Для произвольной точки <i>P</i> внутри треугольника рассмотрим точки <i>A'</i> и <i>C'</i> пересечения прямых <i>AP</i> с <i>BC</i> и <i>CP</i> с <i>AB</i>. Найдите геометрическое место точек <i>P</i>, для которых отрезки <i>AA'</i> и <i>CC'</i> равны.
На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.
Целые числа <i>a, b</i> и <i>c</i> таковы, что числа <sup><i>a</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>c</i></sub> + <sup><i>c</i></sup>/<sub><i>a</i></sub> и <sup><i>a</i></sup>/<sub><i>с</i></sub> + <sup><i>с</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>a</i></sub> тоже целые. Докажите, что |<i>a</i>| = |<i>b</i>| = |<i>c</i>|.
Диагонали трапеции <i>ABCD</i> пересекаются в точке <i>K</i>. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка <i>K</i> лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки <i>K</i>, равны.
Известно число sin α. Какое наибольшее число значений может принимать а) sin <sup>α</sup>/<sub>2</sub>, б) sin <sup>α</sup>/<sub>3</sub>?
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.